Model for the Peptide-Free Conformation of Class II MHC Proteins

نویسندگان

  • Corrie A. Painter
  • Anthony Cruz
  • Gustavo E. López
  • Lawrence J. Stern
  • Zarixia Zavala-Ruiz
چکیده

BACKGROUND Major histocompatibility complex proteins are believed to undergo significant conformational changes concomitant with peptide binding, but structural characterization of these changes has remained elusive. METHODOLOGY/PRINCIPAL FINDINGS Here we use molecular dynamics simulations and experimental probes of protein conformation to investigate the peptide-free state of class II MHC proteins. Upon computational removal of the bound peptide from HLA-DR1-peptide complex, the alpha50-59 region folded into the P1-P4 region of the peptide binding site, adopting the same conformation as a bound peptide. Strikingly, the structure of the hydrophobic P1 pocket is maintained by engagement of the side chain of Phe alpha54. In addition, conserved hydrogen bonds observed in crystal structures between the peptide backbone and numerous MHC side chains are maintained between the alpha51-55 region and the rest of the molecule. The model for the peptide-free conformation was evaluated using conformationally-sensitive antibody and superantigen probes predicted to show no change, moderate change, or dramatic changes in their interaction with peptide-free DR1 and peptide-loaded DR1. The binding observed for these probes is in agreement with the movements predicted by the model. CONCLUSION/SIGNIFICANCE This work presents a molecular model for peptide-free class II MHC proteins that can help to interpret the conformational changes known to occur within the protein during peptide binding and release, and can provide insight into possible mechanisms for DM action.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable peptide binding to MHC class II molecule is rapid and is determined by a receptive conformation shaped by prior association with low affinity peptides.

Formation of stable class II MHC/peptide complex involves conformational changes and proceeds via an intermediate. Although this intermediate complex forms and dissociates in minutes, its conversion to a stable complex is a very slow process, taking up to a few days to reach completion. Here, we investigate the different steps of this binding and demonstrate that the conformational changes nece...

متن کامل

Evaluating the Role of HLA-DM in MHC Class II-Peptide Association Reactions.

Ag presentation by MHC class II (MHC II) molecules to CD4(+) T cells plays a key role in the regulation of the adaptive immune response. Loading of antigenic peptides onto MHC II is catalyzed by HLA-DM (DM), a nonclassical MHC II molecule. The mechanism of DM-facilitated peptide loading is an outstanding problem in the field of Ag presentation. In this study, we systemically explored possible k...

متن کامل

Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II-like conformation for bound peptides (immunologyymajor histocompatibility complexypeptide binding)

The structure of the human major histocompatibility complex (MHC) class II molecule HLA-DR1 derived from the human lymphoblastoid cell line LG-2 has been determined in a complex with the Staphylococcus aureus enterotoxin B superantigen. The HLA-DR1 molecule contains a mixture of endogenous peptides derived from cellular or serum proteins bound in the antigen-binding site, which copurify with th...

متن کامل

Kinetics of peptide binding to the class II MHC protein I-Ek.

Class II MHC glycoproteins bind short (7-25 amino acid) peptides in an extended type II polyproline-like conformation and present them for immune recognition. Because empty MHC is unstable, measurement of the rate of the second-order reaction between peptide and MHC is challenging. In this report, we use dissociation of a pre-bound peptide to generate the active, peptide-receptive form of the e...

متن کامل

The class II MHC protein HLA-DR1 in complex with an endogenous peptide: implications for the structural basis of the specificity of peptide binding.

BACKGROUND Class II major histocompatibility complex (MHC) proteins are cell surface glycoproteins that bind peptides and present them to T cells as part of the mechanism for detecting and responding to foreign material in the body. The peptide-binding activity exhibits allele-specific preferences for particular sidechains at some positions, although the structural basis of these preferences is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008